Convergence on the Levi-civita Field and Study of Power Series

نویسندگان

  • KHODR SHAMSEDDINE
  • MARTIN BERZ
چکیده

Convergence under various topologies and analytical properties of power series on Levi-Civita fields are studied. A radius of convergence is established that asserts convergence under a weak topology and reduces to the conventional radius of convergence for real power series. It also asserts strong (order) convergence for points the distance of which from the center is infinitely smaller than the radius of convergence. In addition to allowing the introduction of common transcendental functions, power series are shown to behave similar to real power series. Besides being infinitely often differentiable and re-expandable around other points, it is shown that power series satisfy a general intermediate value theorem as well as a maximum theorem and a mean value theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized power series on a non - Archimedean field

Power series with rational exponents on the real numbers field and the Levi-Civita field are studied. We derive a radius of convergence for power series with rational exponents over the field of real numbers that depends on the coefficients and on the density of the exponents in the series. Then we generalize that result and study power series with rational exponents on the Levi-Civita field. A...

متن کامل

A brief survey of the study of power series and analytic functions on the Levi-Civita fields

In this survey paper, we will review the convergence and analytical properties of power series on the Levi-Civita field R (resp. C := R⊕iR) as well as the properties of the so-called R-analytic functions on an interval [a, b] of R. In particular, we will show that these have the same smoothness properties as real (resp. complex) power series and real analytic functions on an interval of R, resp...

متن کامل

Analytical properties of power series on Levi-Civita fields

A detailed study of power series on the Levi-Civita fields is presented. After reviewing two types of convergence on those fields, including convergence criteria for power series, we study some analytical properties of power series. We show that within their domain of convergence, power series are infinitely often differentiable and reexpandable around any point within the radius of convergence...

متن کامل

Absolute and relative extrema, the mean value theorem and the inverse function theorem for analytic functions on a Levi-Civita field

The proofs of the extreme value theorem, the mean value theorem and the inverse function theorem for analytic functions on the Levi-Civita field will be presented. After reviewing convergence criteria for power series [15], we review their analytical properties [18, 20]. Then we derive necessary and sufficient conditions for the existence of relative extrema for analytic functions and use that ...

متن کامل

Analysis on the Levi - Civita field , a brief overview

In this paper, we review the algebraic properties of various nonArchimedean ordered structures, extending them in various steps which lead naturally to the smallest non-Archimedean ordered field that is Cauchy-complete and real closed. In fact, the Levi-Civita field is small enough to allow for the calculus on the field to be implemented on a computer and used in applications such as the fast a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005